IMARIS TRAINING

Imaris environment and navigation

Display Adjustment

Microglia cells count & attraction to the vasculature

Exercise 1 - 45 mins

Question : Are microglia cells attracted to the vasculature ? **Topics** : Cells quantification with Spots Cells attraction band identification Cells classification according to the distance to another reference structure detected as « Surface »

Colocalization & intensity profile around nuclei

Exercise 2 - 20 mins

Question: Are specific vesicles more likely to be close to the nucleus membrane ? Do my two sets of vesicles colocalize? If yes, to which extent ? **Topics**: Cells quantification with Surfaces Intensity profile Colocalization measurement using Surfaces overlapping regions

Cell density & classification per region Exercise 3 - 15 mins

Question: Measure cell densities over different regions of interests not defined by a specific staining ? Topics: Classification of cells as Spots per regions using Machine Learning Cell density measurements

Changes in cell speed & intensity over time

Question: How cell dynamics and intensities vary over the cell cycle? **Topics:** Cells tracking with Spots Spots Tracks manual labelling Automatic cells dynamics analysis before and after the cell splitting event

Killer T cell dynamic interacting with a cancer cell

Exercise 5 - 10 mins

Question: How do cytotoxic granules behave when immune killer cells contact a cancer cell? **Topics:**

Granules speed analysis before and after the moment cells contact

Define an Image Time Event manually

Batch 3D genomic analysis by DNA FISH

Exercise 6 - 45 mins

Question: Do two types of alleles colocalize and if yes to which extent? Analysis to be repeated and normalized on multiple images.

Topics:

On multiple folders of multiple images: batch alleles detection using Spots, batch alleles colocalization using inter-object distances Visualize results in an Imaris plot Extract statistics results for further analysis

Imaris environment and navigation

Environment: to get familiar with the Imaris, take this Imaris tour video (7mins30s)

Image files

All **image files** used in the video tutorials listed in the Imaris Learning Path and in this Imaris Training documents can be accessed from the **Arena** interface in the **Imaris Learning Path Folder**

Display Adjustment

If you don't see the Display Adjustment window then Click on Edit/Show Display Adjustment or **CTRL+D**

Navigation and selection

- Left click and Drag to **rotate** the image
- Right Click and Drag to Translate the image
- Middle button to adjust the zoom
- Alt-key to force navigation, you can't select/modify any objects while you hold Alt
- Mouse Object Select Mode: the first click selects the object and the second click lets you modify/move it

Add, Rebuild, Delete objects

- You can Add a new object. The object creation wizard starts from the beginning. All parameters shown will be default values
- You can **Rebuild** existing objects. The object creation wizard from the beginning. All parameters shown will be the ones chosen during the previous building process. They won't be the default values
- You can **Delete** existing objects: Highlight the object and then click on the bin icon circled in orange below

Microglia cells count & attraction to the vasculature

Exercise 1 - 45 mins

Dataset description

File: 1-Microglia-Vasculature_Kofron.ims

Channel 1 : Microglial cells (Green) Channel 2 : Vasculature (Red)

Collected with a multiphoton, 25X silicon immersion lens. Sample approx. 400um deep section of adult mouse brain. Courtesy of Dr. Matthew Kofron, Confocal Imaging core, Cincinnati Children's Hospital Medical Center, OH USA

Scientific question and complete image analysis protocol

Are microglia cells attracted to the vasculature?

- 1- Model Microglia cells as Spots to count them in Ch1 Green
- 2- Model the Vasculature as Surfaces to detect it in the Ch2 Red
- 3- Identify the "Attraction Band" where Microglia Spots are attracted by the Vasculature

4- Create 2 subpopulations of microglia and label them according to their positions in/out of the Attraction Band

Step by step guided exercise Open the image file:

Open Imaris by double clicking on the main Imaris pink application icon:

Make sure you are in the "Arena" interface which is Imaris library of images and double click on the file **1-Microglia-Vasculature_Kofron.ims**

Channel Display Adjustment

Adjust the Channel renderings for optimal visualisation:

For more information on the Display Adjustment window Click this button

Spots Creation Wizard: Rebuild

Rebuild the existing Spots object to count Microglia and get their positions

Bitplane AG | Badenerstrasse 682, CH-8048, Zürich, Switzerland Tel: +41 (0)44-430-1100, Fax: +41 (0)44-430-1101 | imaris.com

Option explanations:

- Skip automatic creation, Edit manually: if clicked, you'll skip all steps of the automatic creation wizard and you will have to create Spots manually.
- Favourite creation parameters: you can load previously saved parameters as favourite.
- Segment only a Region Of Interest: if checked, during the set up and optimisation process of the wizard of creation parameters, calculation will be restricted to an ROI so that it is fast. Once all steps of the wizard of creation are completed, calculation will run on to the full image. Here, we uncheck this box as we are working on a demo image however once you'll be working on your own dataset, best is to check it to gain in speed.
- **Different Spot Sizes**: This is to create Spots with different diameters adjusted to the signal. If it is not checked then all created Spots will have the same diameter. Here, as we just need Spots count & positions and considering that all Microglia have very similar cell bodies (in terms of size and intensity), Spots of the same sizes will do.
- **Classify Spots**: if checked, once Spots are detected, it enables automatic Spot Classification using either 1D or 2D filters or Machine Learning.
- Object-Object statistics: if checked, it enables the calculation of distances between objects.
- > Blue arrow: to move from one step to the next one or previous one
- Green arrow: to finish the wizard of creation automatically using either default or loaded favourite or previously used parameters

Option explanations:

- Source Channel: Select the channel containing the structures you want to detect as Spots.
- Estimated Diameter; Type in an estimation of the diameter of your typical structures. Objects with size smaller than the specified Estimated Diameter are not detected.
- Model PSF-elongation along Z-axis: This is to create elliptical shaped Spots in opposition to spherical shaped Spots which is the default. This parameter specifies the dimension of the Spots object in the Z direction (usually 2 x XY diameter). This is useful for images where the signal is largely stretched in the Z direction like in Wide Field images not deconvolved. It can correct for artefacts as shown below:

Volume Rendered Object

Spherical Spots (artifact)

Ellipsoid Spots (correct)

• Background Subtraction: the background will be removed prior to Spots' detection. Technically background subtraction smoothes the image. The intensity is the one of a Gaussian filtered channel (Gaussian filtered by 3/4) minus the intensity of the original channel Gaussian filtered by 8/9 of sphere radius.

Spots Creation Wizard: Step 3/3

Option explanations:

O Center Point

Histogram: In the histogram the regions above and below the threshold values are displayed in white, while region within threshold is displayed in yellow

- The green A stands for Automatic threshold
- The green M stands for Manual threshold
- Left click to move the lower threshold
- Right click to move the higher threshold
- Scroll to zoom in the histogram

The histogram has a zoom bar at the top:

- Mouse wheel allows to zoom in and out.
- Holding right-click on the zoom bar allows to pan.
- Double right-click resets the zoom.

Spots filtering is incorporated into the creation process. Filters allow the removal of objects that would interfere with interpretation of results.

Quality: The 'Quality' is the intensity at the centre of the spot in the channel Spots were detected.

- If 'Background Subtraction' was not checked this is the intensity of the channel Gaussian filtered by 3/4 of spot radius.
- If 'Background Subtraction' was active the intensity is the one of a Gaussian filtered channel from above minus the intensity of the original channel Gaussian filtered by 8/9 of spot radius.

Spots Statistics

The Spots creation wizard turns into a list of Property tabs (click 📃 to explore all properties) of which the Statistics tab:

where you can select or deselect any Statistic

⇒ Here, we detected all Microglia, got their total count (340) and their positions

Attraction Band plot

Create a graph showing the "Attraction Band" of Microglia to the vasculature. n this exercise, the vasculature was already modelled as a Surface object. To learn how to create a Surface object you can refer to our video tutorials or exercise 2 of the present document.

- 1- Switch to the Vantage View
- 2- Select Spatial View
- 3- Select Spots-Surfaces correlation:
- Number of Spots
- 4- Select Probability Density Plot
- 5- Check Show "complete spatial random" generated data
- 6- Check Show Attraction Distance
- 7- Select Outside of Surface

- X axis: Distance from the centre of each Microglia Spot to the edge of the closest vasculature Surface. Positive numbers correspond to Spots outside the Vasculature and negative values to Spots inside the Vasculature. Spots inside the Vasculature could be quantified if the option "Shown Number of Spots" had either been set to Inside Surface or In- and Outside Surface. Here as the option was set to Outside Surface there are only positive values
- Y axis: Microglia Spots Density Percentage
- White line: Measured Microglia Spots
- White dashed line: Expected Percentage of Random Spots
- Red vertical line: Attraction Distance

An **attraction or repulsion can be concluded** if the observed (solid line) is outside the confidence interval band of the randomised distribution (dashed line)

⇒ In this experiment, the attraction band here is of 18.8 um from the edge of the Vasculature Surface. This number is determined by the intersection of the measured Spots curve (white line) and the random (dashed line).

Spatial statistics are calculated during surfaces and spots object creation. In this analysis the cumulative number of spots within a distance (d) from the surface are measured, in addition to, the number of spots at a distance (d) from the surface (Not shown in this exercise). Imaris also simulates randomly positioned spots (the same number as in the image) and generates a confidence band around the expected value of the 1000 simulations, facilitating a useful comparison with the measured object statistics.

The probability density plot applies a kernel smoothing width to the data displayed in the histogram plot. The kernel width is displayed beneath the chart in the plot display area.

Confidence Band - Simulation Data

The confidence band of the random spots is computed by taking the number of spots in the image and running a thousand simulations to generate the simulated envelope such that it encloses 98% of the simulated values. With 1% of the simulations falling outside of the simulated envelope i.e. 1% of the simulations are above and below the envelope respectively.

The methods employed by Imaris 9.7 are based on well-established methods from the field of spatial statistics. In statistical terminology Imaris 9.7 plots the "intensity" of the observed spots as a function of the shortest distance to the surface, Baddeley 2015 chapter 6.6. Randomization envelopes and hypothesis tests are described in Baddeley 2015, chapter 10. The method was adapted from the approach published by Gomariz et al. 2018: https://www.nature.com/articles/s41467-018-04770-z Gomariz, Alvaro, Patrick M. Helbling, Stephan Isringhausen, Ute Suessbier, Anton Becker, Andreas Boss, Takashi Nagasawa et al. 'Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy.' Nature communications 9, no. 1 (2018): 1-15

Spots Microglia 1D Filter Classification

We'll create 2 Microglia Spot classes as follow:

- Spots in the "Attraction Band" at a distance <20um from the Vasculature Surface edges
- Spots **away from the "Attraction Band"** at a distance **>20um** from the Vasculature edges

First switch back to the Surpass View :

1- **Uncheck** the **Volume** so it is not displayed in the 3D Scene

Check the **Surfaces Vasculature** to display them in the 3D Scene

Check and **Highlight** the **Spots Microglia** to display them in the 3D Scene and display their property tabs

3- Click on the Creation tab (magic wand)4- Recompute Classification

12

The Spots creation wizard turns back into a list of property tabs.

⇒ In the Statistics tab, you can read the total count of Microglia and their counts per class

* 🔨 🖌 🖉 T 🚾 🐟					
Overall Spatial Detailed Selection					
Variable 👻	Value	Unit	Class	ID	
Number of Spots per Time Point	340				
Number of labelled Spots per Class	188		Set 1::Microglia in Att. Band		
Number of labelled Spots per Class	152		Set 1::Microglia out Attr. Band		0
Number of labelled Spots per Class per Time Point	188		Set 1::Microglia in Att. Band		<u></u>
Number of labelled Spots per Class per Time Point	152		Set 1::Microglia out Attr. Band		
Total Number of Spots	340				
*			به 🔅 🔎	bé 😳	

Snapshot

Set the image rendering as follow:

1- Click on Fit and then Reset to bring the image back to its native position

2- Check & Highlight the Volume and Check all channels in the Display Adjustment window so they are all visible in the 3D Scene and the Volume Property tabs are displayed

3- Uncheck Microglia Spots and Vasculature Surfaces so they are not displayed in the 3D Scene 4- In the Volume Settings tab, change the rendering mode to Normal Shading and adjust the transparency of each channel as shown

Add a Clipping Plane

Take a Snapshot

More for later...

...about this image:

You can explore the same dataset fully analysed for Microglia classification according to their activation state (ramification, shape, volume...): Dataset name **1-Complete-analysis-Microglia-Vasculature_Kofron**

...about these topics:

Imaris Spots detection algorithm Blend and Normal Shading volume rendering modes tutorial ShortestDistanceToSpots and ShortestDistanceToSurfaces

15

Colocalization and intensity profile around nuclei

Exercise 2 - 20 mins

Dataset description

File: 2-Nuclei_and_2_Prot_Coloc_Amita Gorur.ims

Channel 1 : Nuclei (DAPI) (Blue)

Channel 2 : Vesicles type 1 (Pink)

Channel 3 : Vesicles type 2 (Cyan)

Courtesy of Dr. Amita Gorur and Dr. Randy Schekman, University of California, Berkeley, USA

Scientific question and complete image analysis protocol

Are specific vesicles more likely to be close to the nucleus membrane ? Do my two sets of vesicles colocalize and to which extent?

- 1- Detect nuclei as Surfaces to get counts and volumetric and morphological statistics
- 2- Visualise the 2 vesicles types intensity channels spread around the nuclei Surfaces
- 3- Detect the 2 types of vesicles as Surfaces to get counts and volumetric and morphological statistics

4- Measure the overlapping regions between the 2 vesicle types Surfaces to evaluate their colocalization

Distance to the Nuclei (Ch1) Surfaces edges (um)

Step by step guided exercise Open the image file:

Open Imaris by double clicking on the main Imaris pink application icon:

Make sure you are in the "Arena" interface which is Imaris library of images and double click on the file **2-Nuclei_and_2_Prot_Coloc_Amita Gorur.ims**

Surface Rendering Adjustment

Adjust Nuclei Surfaces texture, transparency and colour to better visualize all vesicle types inside or outside the Nuclei..

Type Ctrl-D to open the Display Adjustment if it closed. For more information on the Display Adjustment window Click this button

Spatial View Surface Nuclei-Image Correlation: Image Intensity Plot

To verify if the two types of vesicles are more likely to be close to the nucleus membrane, we'll generate an intensity profile of their channels around the Nuclei.

Imaris Vantage here generates an intensity profile plot in all directions around the Nuclei Surfaces for each channel (Channel 2 & 3).

⇒ We can see here, that most of the vesicles intensities are included in a shell of 4um around the Nuclei.

The **Surface-Image Correlation: Image Intensity** allows for the comparison of the image intensity with respect to the Surface object.

The plot shows the average image intensity of each image channel versus distance d from the surface. This plot lets you inspect whether the intensities in some channel change as a function of distance from the surface. Clearly this is expected for the channel from which the surface was computed. Other channels may also exhibit a change of intensity with distance. Spatial statistics are calculated during surface object creation.

Surface Creation Wizard: Rebuild

To check if the two sets of vesicles colocalize and if yes to which extend, we'll model each vesicle type as Surfaces and evaluate if there are any overlapping volumes.

First switch back to the Surpass View :

Re-build the Channel 3 (Cyan) Vesicles Surfaces

Surface Creation Wizard: Step 1/5

Don't click, we'll generate Surfaces automatically No parameters to load Uncheck Uncheck Check, we'll need the distance between the present Cyan vesicles Surfaces and the other type pink vesicles Surfaces

Click on the Blue arrow circled to go to the next step

Option explanations:

- Skip automatic creation, Edit manually: if clicked, you'll skip all steps of the automatic creation wizard and you will have to create Surfaces manually.
- Favourite creation parameters: you can load previously saved parameters as favourite.
- Segment only a Region Of Interest: if checked, during the set up and optimisation process of the wizard of creation parameters, calculation will be restricted to an ROI so that it is fast. Once all steps of the wizard of creation are completed, calculation will run on to the full image. Here, we uncheck this box as we are working on a demo image however once you'll be working on your own dataset, best is to check it to gain in speed.
- **Classify Surfaces:** if checked, once Surfaces are detected, it enables automatic Surfaces Classification using either 1D or 2D filters or Machine Learning.
- Object-Object statistics: if checked, it enables the calculation of distances between objects.
- > Blue arrow: to move from one step to the next one or previous one
- Green arrow: to finish the wizard of creation automatically using either default or loaded favourite or previously used parameters.

Surface Creation Wizard: Step 2/5

Option explanations:

- **Smooth:** sets up the smoothness of the resulting area. Smoothing applies a Gaussian filter to the data set. If the option Smooth is selected, then the Surface Detailed Level value should be determined.
- Background Subtraction: if checked, it applies a Gaussian filter to estimate the background intensity value of each voxel. This variable background is then subtracted from every voxel in the image; Baseline Subtraction is performed. The width of the Gaussian filter is determined by the diameter of the largest sphere that fits into the Object from the intensity of the original channel.

Surface Creation Wizard: Step 3/5

Option explanations:

- **Threshold**: Objects with values below the Lower Threshold and objects with values exceeding the Higher Threshold will be excluded and only those objects with quality inside the interval defined by the two threshold values are considered.
- The Green A stands for Automatic thresholding: the initial threshold value is automatically computed using an algorithm based on [T.W. Ridler and S. Calvard, "Picture thresholding using an iterative selection method", IEEE Trans. System, Man and Cybernetics, SMC-8 (1978) 630-632]. If you do a Manual thresholding, then you'll see a green M
- Split touching Objects (Region Growing): This option supports the separation of two or more objects that are identified as one. The region method for segmentation in Imaris starts with defining seed points in each peak center. Then a region growing process will run around each seed point where the region grows until a border stops the growing. The threshold you set above is the border of the region growing

Surface Creation Wizard: Step 4/5

Bitplane AG | Badenerstrasse 682, CH-8048, Zürich, Switzerland Tel: +41 (0)44-430-1100, Fax: +41 (0)44-430-1101 | imaris.com

Click on **the green arrow** to finish the wizard of creation and get the Surfaces property tabs

Surfaces Color tab

The Surfaces wizard of creation turns into a list of Surfaces property tabs (Click 📘 to explore properties)

In the Color tab, select Base then the Cyan colour and the Transparent O material

(s) 💐 🖌 🍠 T 🔢 💽 🚯	
Color Type	201 201 201 201
O Object ID O Track ID	
O Statistics Coded O Time Mapped	
	Con Proper good
R: 0.000	
G: 0.800	
Material	
	The second second
	HA AND C

Surfaces Statistics

In this exercise, we are interested into measuring the colocalization between the two types of vesicles. One way of measuring colocalization is to measure the overlapping between the Pink and and Cyan Surfaces. The statistics are called ::

- a. Overlapped Volume to Surfaces Surfaces
- b. Overlapped Volume Ratio to Surfaces

xml file

Exports only the observed statistic in the table

Opens the Preferences window under the Surfaces Statistics where you can select or deselect any Statistic

More for later... Imaris Surfaces Detection algorithm Colocalization tutorial and webinar

Cell density and classification per region

Exercise 3 - 15 mins

Dataset description

File: 3-Plant_Cells_ML_Clasification.ims

Channel 1 : Nuclei (DAPI) (Blue) Channel 2 : GFP (Green) Channel 3 : RFP (Red)

Plant Cells image collected at the Institute Pasteur Paris with an Andor DragonFly spinning disk, Courtesy of Dr. Bruno Combettes, Andor Technology Ltd., Belfast, UK

Scientific question and complete image analysis protocol

Measure cell density over different regions of interest that are not defined by a specific staining?

- 1- Detect Nuclei as Spots to get their count and positions
- 2- Classify Nuclei per Region Of Interest using Machine Learning
- 3- Evaluate densities of each subpopulation and compare them

Step by step guided exercise Open the image file:

Open Imaris by double clicking on the main Imaris pink application icon:

Make sure you are in the "Arena" interface which is Imaris library of images and double click on the file **3-Plant_Cells_ML_Clasification.ims**

Spots Machine learning (ML) Classification: Rebuild

We will classify Nuclei per region using Machine Learning. Here, the difficulty of the classification lies in the fact that a colocalization study would not describe these 3 regions correctly. For instance, some Spots should be classified in the Red region whereas their blue DAPI intensity does not colocalize with the Red Channel. Below, a zoom in the "Red" region where Spots are classified as "Red" Class:.

Let's rebuild the existing classification. The very first step could take a minute or 2 as Imaris is recalculating all Machine Learning specific Statistics. (click is to explore Machine Learning statistics)

Spots Machine learning Classification: Clear Training and Predicted sets

Spots Machine learning Classification: Select and train

1-Select a set of **Spots** to classify as **Red** 2-Click on **Add** to the **second** Class

1-Select a set of Spots to classify as Green

Train your model by Clicking Train and Predict

Review the results

Correct mistakes: here, we **select** some Spots **miss-classified** in the third class green and **Add** them to the **correct Class** first class Blue. To select multiple circular regions, hold CTRL and click.

Bitplane AG | Badenerstrasse 682, CH-8048, Zürich, Switzerland Tel: +41 (0)44-430-1100, Fax: +41 (0)44-430-1101 | imaris.com

Re-train your model again by clicking again on Train and Predict

Re-iterate manual corrections and "Train and Predict" until all Spots are correctly classified and then click on the green arrow to finish the classification

⇒ Finally, all Nuclei Spots were correctly classified by the Machine Learning method.

This method takes advantage of all standard statistics calculated by Imaris (including Average Distance to Nearest Neighbour) and additional "Machine Learning Statistics", which provide more information about local intensity landscape, "texture", intensity on the edges and shape information.

The trained model can be saved within all creation parameters as favourite parameters and for Batch processing.

You can re-used the saved parameters and train even more your model on other images and then saved the improved model.

To save parameters, just move the Creation tab of the created objects and save.

4- Test a few density statistics such as :

SpotsAverageDistanceTo3NearestNeighbours

Measures the average distance to the nearest 3 spots within the same spots component. • SpotsAverageDistanceTo5NearestNeighbours

Measures the average distance to the nearest 5 spots within the same spots component.

SpotsAverageDistanceTo9NearestNeighbours

Measures the average distance to the nearest 9 spots within the same spots component.

⇒ The SpotsAverageDistanceToNearestNeighbours statistics provides useful density measurements for the spots. Where the average distance is large, density is low. These statistics can be useful for discriminating regions with different spot densities.

More for later : Classification concept and Machine Learning

Changes in cell speed and intensity over time

Exercise 4 - 30 mins

Dataset description

File: 4-Embryogenesis_part_no_labels.ims

Channel 1 : GFP -Histone (Green) Drosophila development early stage

Courtesy of Dr. Matthew Kofron, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA

Scientific question and complete image analysis protocol

How cell dynamics and intensities vary over the cell cycle?

- 1- Detect and track cells over time as Spots
- 2- Label cells (Spots) per developing embryo region
- 3- Analyse Cell behaviours before and after they Split

Y: Time Since Track Split Event (s)

Step by step guided exercise

Open the image file:

Open Imaris by double clicking on the main Imaris pink application icon:

Make sure you are in the "Arena" interface which is Imaris library of images and double click on the file **4-Embryogenesis_part_no_labels.ims**

Spots Tracking: Rebuild

Spots Tracking: Algorithm

Spots Tracking: Measure Max Distance and Gap Size:

Spots Tracking: Filter Tracks

Spots Tracking: Tracks Rendering

The Spots Tracking wizard of creation turns into a list of Property tabs

Bitplane AG | Badenerstrasse 682, CH-8048, Zürich, Switzerland Tel: +41 (0)44-430-1100, Fax: +41 (0)44-430-1101 | imaris.com

Spots Tracking: Statistics

Opens the **Preferences** window under the Spots Statistics where you can select or deselect any Statistic

Spots Tracks: Manual Labelling

Prepare the Spots Tracks visualisation for labelling

Create the 4 Classes (labels) to be used

Bitplane AG | Badenerstrasse 682, CH-8048, Zürich, Switzerland Tel: +41 (0)44-430-1100, Fax: +41 (0)44-430-1101 | imaris.com

Manually label tracks as follow:

Repeat the process to Assign a Class to each Spot Track

NB: The class names are biological wrong. The location names are correct each for halve of the objects but not for a single quadrant. See

https://en.wikipedia.org/wiki/Anatomical_terms_of_location#/media/File:Anatomical_Directions_an_d_Axes.JPG

I am not sure what would be correct tor the quadrants, maybe I should have used Quadrant1, Quadrant2,...
199 🔨 🖊 💓 🥥 🚳 T 👿 🌒 199				
Overall Detailed Selection				
Variable 🔻	Value	Unit	Â	
Number of Spots per Time Point	87.0			
Number of Tracks	26.0			
Number of labelled Spots per Class	829			
Number of labelled Spots per Class	704			
Number of labelled Spots per Class	642			
Number of labelled Spots per Class	885			
💥 Number of labelled Spots per Class per Time Point	24.0			
₩ Number of labelled Spots per Class per Time Point	17.0			
		Þ		
Number of Spots per Time 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
0 500 1,000 1,500 2,000 2,500 Ti <u>me [s]</u>	3,000	3,500		
* 9	*	📑 bé		

Bitplane AG | Badenerstrasse 682, CH-8048, Zürich, Switzerland Tel: +41 (0)44-430-1100, Fax: +41 (0)44-430-1101 | imaris.com

Time Event parameter Set up: Spot Track Split

We will now proceed to the analysis of the behaviour of cells before and after they split. The event variable parameter for the following study will be set as being the moment a cell splits. This moment is different for each cell so it is a variable called here TrackSplit Event

Time Event Plot: Speed & Intensity vs. Time Since Track Split Event

In the Y axis, we see the speed of all cells before and after O, so before and after each cell splits The moment cell splits, there is an increase in their speed (see peak at X=O)

We can also observe for all cells, the differences in Intensity (Y) before and after cells split (X=O). It goes as expected, up and back down illustrating the DNA replication during the Cell Cycle

⇒ Imaris facilitates the investigation of cell dynamics by providing an easy mechanism to synchronize measurements based on "events" independently defined for each cell. For example, in a movie of dividing cells where divisions happen at different times you can define the event as when a cell divides and then plot synchronized measurements in time relative to the event.

More for later... Imaris Tracking algorithms

Killer T cell dynamic interacting with a cancer cell Exercise 5 - 10 mins

Dataset description

File: 5-Immune_Cell_Attacking_Cancer_Cell.ims

Channel 1 : Cancer Cell Channel 2 : Killer T-Cell Channel 3 : Cytotoxic Granules

3D time lapse image of a Killer T cell eating a cancer cell, Courtesy of Dr. Alex Ritter, Cambridge University, UK

Scientific question and complete image analysis protocol

How do cytotoxic granules behave when immune killer cells contact a cancer cell?

- 1- Create and track Surfaces for the Cancer Cell and the Killer T Cell nuclei (Ch 1 Blue)
- 2- Create and track Spots for the Cytotoxic Granules (Ch 3 Red)
- 3- Set manually as Image Time Event, the time point when the Killer T Cell and Cancer Cell contact

4- Plot the Cytotoxic Granules (Spots) Speed vs. Time relative to the contact event to detect any Speed changes

Step by step guided exercise

Open the image file:

Open Imaris by double clicking on the main Imaris pink application icon:

Make sure you are in the "Arena" interface which is Imaris library of images and double click on the file **5-Immune_Cell_Attacking_Cancer_Cell.ims**

Time Event Set up: Image Time Frame

Watch the image time lapse using the bottom left play button. Try to identify the moment (frame number) when the Killer T Cell and the Cancer Cell gets in contact so that the Cytotoxic Granules can cross from one cell to the other.

Time Event Plot: Speed vs. Time Since Image Time Frame

Plot the Cytotoxic Granule Spot Speeds vs. Time relative to the contact event to detect any Speed changes before and after the fusion of the Killer T cell and the Cancer cell

There is a speed increase (peak) of the Cytotoxic Granules when they enter the Cancer Cell (X=O)

More for later...about this topic:. <u>Time plots</u>

Batch 3D genomic analysis by DNA FISH Exercise 6 - 45 mins

Dataset description

Folder 6-Batch Colocalized Spots which includes:

- Folder Experiment1 : duplicates images Experiment1.1.ims & Experiment1.2.ims
- Folder Experiment2 : duplicates images Experiment2.1.ims & Experiment2.2.ims
- Coloc.icsx: Batch protocol parameters
- Experiment1and2Comparison.iplx: comparison plot of the 4 images

Murine stem cells with 3 probes and DAPI.

Courtesy of Dr. Julie Chaumeil and Dr. Pierre Bourdoncle, Institut Cochin, Paris, France

Scientific question and complete image analysis protocol

Do two types of alleles (Red and Cyan) colocalize and if yes to which extent? Analysis to be repeated and normalized on multiple images so to be run in batch.

- 1- Set-up a single Batch Protocol that:
 - a. Detects 2 types of alleles (Cyan & Red) as elliptical Spots
 - b. Detects all nuclei as Surfaces
 - c. Calculates inter-alleles distances (Cyan Red distances)
 - d. Classify Cyan and Red alleles as Colocalizing or Not colocalizing using an inter-allele distance threshold
- 2- Launch the batch protocol on folders and sub-folders of images
- 3- Visualize results in a plot
- 4- Export statistics in excel for further statistical analysis

Step by step guided exercise

This exercise was already solved. A batch protocol was set-up & ran and a plot was already created for results visualisation.

First, we will explore all the created files in the Arena interface before going to the actual exercise where we'll see how to create a batch protocol, launch it and visualize the results.

Open Imaris by double clicking on the main Imaris pink application icon:

Make sure you are in the "Arena" interface which is Imaris library of images and under the Batch exercise image folder : 6-Batch Colocalized Spots

This blue icon leads to saved parameters for a batch protocol analysis

The bicoloured boxplot icon leads to the Vantage view for statistical plotting such as a comparison plot

45

Highlight successively the Experiment1 and Experiment2 folders to explore them. Each folder contains duplicate images of 2 different experiments:

Highlight (single click) one image to see the following information:

Typical image exploration

Before setting-up a Batch protocol, one should have already explored key image properties from different conditions such as a negative control, a positive control and an unknown case.

After this exploration, one has a good idea of how to set-up segmentation parameters to batch like: which detection tool to use (Spots, Surfaces, Cell or FilamentTracer), which algorithms to use, structure shapes and sizes, resolution etc

Therefore, in this first step, you can explore one of the four images to batch. Double click on the Eperiment1/Experiment1.1.ims file to open it in the Surpass 3D interface:

As all files were already batch processed, batch protocol results will appear, meaning you will see already created objects.

 If you wish, to learn how to measure quickly distances to explore structure sizes, click on this button

• The image resolution window opens with the Ctrl + I command if you wish to check it

Note that the image is stretched along the Z direction. Alleles don't look spherical but rather elliptical:

This is due to the diffraction of the light inherent to any microscope . This deformation could be corrected by a deconvolution image processing method but that could be another exercise ...

Batch Editor

To create a new batch protocol, you need to be in a folder that contains images so the "New Batch" blue and green icon becomes clickable. Do not create a new Batch protocol.

Bitplane AG | Badenerstrasse 682, CH-8048, Zürich, Switzerland Tel: +41 (0)44-430-1100, Fax: +41 (0)44-430-1101 | imaris.com As a batch protocol was already created for this exercise, instead of creating a new batch protocol from scratch, we will explore all steps of the existing one. To do so, first move to the batch exercise folder as follow:

Then double click on the batch parameter blue icon to open the batch pipeline editor:

To explore all steps of the batch protocol we need to use an image as a template. Therefore double click on the Experiment1 folder to open it:

This opens the batch set-up editor interface at step 1 of the protocol creation wizard. This steps can enable image processing such as deconvolution, inversion of a channel, Gaussian filters, background substraction etc. We will not perform any image processing in the present exercise so you can skip this step as follow:

In Step 2 of the Batch Set-up, we can see that 4 different objects will be created:

- Nuclei
- Ref
- Cyan
- Red

By highlighting any object name, its wizard of creation appears at the bottom left letting you know also its object type: Spots, Surfaces, Cell or Filament.

If one needs to create an extra object, he can click on the top of the list icons (Spots or Surfaces or Cell or Filament). There is no need to create new objects in this exercise.

! If you don't see the "Display Adjustment" window hit on the keyboard: Ctrl + D

Image description:

- o Ch1: Blue nuclei
- o Ch2: Red alleles
- o Ch3: Cyan alleles
- o Ch4: Green alleles

- We will detect all nuclei per image as Surfaces objects to get their counts, volumetric and morphological descriptions. This can be useful if one needs to normalise the batch results at the end. This normalisation will not be shown in the present exercise.
- We need to detect the Red and Cyan alleles (as Spots) then measure the distance between them to see if they colocalize (using the Spots-Spots Shortest Distance statistic), then classify each Red and Cyan allele as a Colocalizing allele or Not Colocalizing.
- We will not use Ch4 green in this exercise.

Set-up Nuclei detection as Surfaces for Batch

The aim of the exercise is to find colocalizing alleles, however if one would like to normalize results per image using the number of cells/nuclei, we need to also detect nuclei.

Option explanations:

- **Process entire Image finally**: if checked, the full image will be processed at the end of the wizard set-up. During the wizard parameters set-up, only a region of interest is display in the 3D scene.
- .Classify Surfaces: if checked, once Surfaces are detected, it enables automatic Surfaces Classification using either 1D or 2D filters or Machine Learning.
- **Object-Object statistics:** if checked, it enables the calculation of distances between objects (Spots-Surfaces and Surfaces-Surfaces)
- > Blue arrow: to move from one step to the next one or previous one
- > Green arrow: to finish the wizard of creation automatically using already entered parameters.

Option explanations:

- Smooth: sets up the smoothness of the resulting area. Smoothing applies a Gaussian filter to the data set. If the option Smooth is selected, then the Surfaces Detailed Level value should be determined.
- **Background Subtraction:** if checked, it applies a Gaussian filter to estimate the background intensity value of each voxel. This variable background is then subtracted from every voxel in the image; Baseline Subtraction is performed. The width of the Gaussian filter is determined by
- the diameter of the largest sphere that fits into the Object from the intensity of the original channel.

Option explanations:

- **Threshold**: Objects with values below the Lower Threshold and objects with values exceeding the Higher Threshold will be excluded and only those objects with quality inside the interval defined by the two threshold values are considered.
- The Green A stands for Automatic thresholding: the initial threshold value is automatically computed using an algorithm based on [T.W. Ridler and S. Calvard, "Picture thresholding using an iterative selection method", IEEE Trans. System, Man and Cybernetics, SMC-8 (1978) 630-632]. If you do a Manual thresholding, then you'll see a green M
- Split touching Objects (Region Growing): This option supports the separation of two or more objects that are identified as one. The region method for segmentation in Imaris starts with defining seed points in each peak center. Then a region growing process will run around each seed point where the region grows until a border stops the growing. The threshold you set above is the border of the region growing

🕂 Create 🐓 Settings 🛁 Color		
Filter Seed Points		
Filters		
Add	- X Delete	
Eilbar Toren		
riter type		
Area		
 @\ ∭@A 29.6	M&A 151	
=		
-		
-		
Skip the Filter Seed Points	Step by moving to the next step cli	icking
on the right blue arrow.	• , 3	
A/5		
C/#		
☐ Batch stores processed image		
		🔵 Back 🧶 Cancel 🥥 OK
Create 💙 Settings 🥣 Color		
Filter Surfaces		
Add		
Filter Type		
· · · · · · · · · · · · · · · · · · ·		
🗢 Area		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M M ▲ 151	
=		
Skip the Filter Surface Step	and finish the wizard clicking on th	ne
green arrow.		
-		
5/5		
Batch stores processed image		

The Surface wizard of creation to detect Nuclei is ready. The small magic wand icon in front of the Nuclei Surfaces object disappears.

Set-up Reference Red alleles detection as Spots for Batch

We are interested in the colocalization between the Red and Cyan alleles. However, you'll notice that we have 3 Spots objects and the first one is named "Ref".

Indeed, when Imaris will generate the first Spots object "Ref" (for reference) there will be no other Spots object to calculate any inter-object distances at this stage so the Object-Object Statistics option will not have any effect just yet

For the Object-Object Statistics option to work, Imaris needs a second Spots object to be created, here the Cyan alleles Spots, so that it outputs the distances between all Cyan and Red Spots "Ref".

In the Cyan Spots alleles statistics we'll find::

- The measurement: Shortest distance from Cyan alleles Spots to Red alleles Spots 'Ref"
- And thanks to the classification step:
 - the number of Cyan alleles colocalizing with Red alleles that is to say that are below a user defined distance threshold from the Red allele Spots
 - the number of Cyan alleles NOT colocalizing with Red alleles that is to say that are above a user defined distance threshold from the Red allele Spots

For this calculation to happen, the option <u>Object-Object Statistics</u> has to be enabled (checked) in <u>both</u> <u>Red "Ref" and Cyan Spots creation wizards</u>.

Further, we'll need to re-create Red allele Spots named "Red" so that the Shortest distance from Red to Cyan will be also available in the Red alleles Spots statistics:

- 1- By identifying the number of colocalized Spots for both Red and Cyan, we can calculate the stoichiometry of these two alleles. In this experiment, its 1:1, but you may see different stoichiometry in other experiments
- 2- We also would like to get the number of Red allele Spots that do NOT colocalize with Cyan allele Spots. So we need to also classify Red allele Spots in 2 classes: the one colocalizing with Cyan alleles (below a user defined distance from Cyan Spots) and the NOT colocalizing with Cyan (above below a user defined distance from Cyan Spots)

- Source Channel: Select the channel containing the structures you want to detect as Spots.
- Estimated Diameter; Type in an estimation of the diameter of your structures. Objects with size smaller than the specified Estimated Diameter are not detected.
- Model PSF-elongation along Z-axis: This is to create elliptical Spots in opposition to spherical Spots which is the default. This parameter specifies the dimension of the Spots object in the Z direction (usually 2 x XY diameter). This is useful for images where the signal is largely stretched in the Z direction like in Wide Field images not deconvolved. Z elongation is most prominent when working with objects close to diffraction limit and happens to most common types of microscopes (widefield, confocal, etc.) It can correct for artefacts as shown below:

Volume Rendered Object

Spherical Spots (artifact)

Ellipsoid Spots (correct)

• Background Subtraction: the background will be removed prior to Spots' detection. Technically background subtraction smoothes the image. The intensity is the one of a Gaussian filtered channel (Gaussian filtered by 3/4) minus the intensity of the original channel Gaussian filtered by 8/9 of sphere radius.

The Spots wizard of creation to detect red alleles as "Ref" is ready. The small magic wand icon in front of the Ref object disappears.

Option explanations:

Histogram: In the histogram the regions above and below the threshold values are displayed in white, while region within threshold is displayed in yellow

- The green A stands for Automatic threshold
- The green M stands for Manual threshold
- Left click to move the lower threshold
- Right click to move the higher threshold
- Scroll to zoom in the histogram

The histogram has a zoom bar at the top:

- Mouse wheel allows to zoom in and out.
- Holding right-click on the zoom bar allows to pan.
- Double right-click resets the zoom.

Spots filtering is incorporated into the creation process. Filters allow the removal of objects that would interfere with interpretation of results.

Quality: The 'Quality' is the intensity at the centre of the spot in the channel the Spots was detected.

- If 'Background Subtraction' was not checked this is the intensity of the channel Gaussian filtered by 3/4 of spot radius.
- If 'Background Subtraction' was active the intensity is the one of a Gaussian filtered channel from above minus the intensity of the original channel Gaussian filtered by 8/9 of spot radius.

Set-up Cyan alleles detection as Spots for Batch

Fill in the next steps as follow:

🤾 Create 🍀 Settings	Color		🤾 Create	🧱 Se	ttings	Color	
Source Channel			Filter Spots				
Source Channel			Filters				
Channel 3 - Masked Cyar	n	•	🕈 Add		X Delete		
Spot Detection			🔹 "Quali	ity" above	30.0		
Estimated XY Diameter:	0.500	μm					
Model PSF-elongation alo	ong Z-axis						
Estimated Z Diameter:	1.00	μm	Filter Type				
☑ Background Subtraction							
			• Quality	у			•
			<u>(</u>) M≲ :	30.0		🔥 M@A	
			=				
						1	
			-		_		
2/4	2 2 2 2		_				
Batch stores processed im			-				
			-0		8 of 9 sele	cted (89%)	325
			2/4				

<u>*Note:</u> the distance measurement for Spots is from the center of the Spots, and the threshold we set (1 um, 2x Spot diameter) means the two Spots are at least "touching"

The Spots wizard of creation to detect Cyan alleles as "Cyan" Spots is ready. The small magic wand icon in front of the "Cyan" object disappears.

Set-up Red alleles detection as Spots for Batch

As mentioned before, we need to re-create Red allele Spots named "Red" so that the Shortest distance from Red to Cyan will be also available in the Red alleles Spots statistics. This way, we'll get the number of Red alleles Spots that colocalize with Cyan alleles, and the number of Red allele Spots that do NOT colocalize with Cyan allele Spots.

Proceed as follow similarly to the previous step:

2/4

-0

3/4

8 of 13 selected (62%)

314

🔧 Create 😻 Se	ttings 🌖 Color				
Classification					
Set	Input	Filter Type			
Set 1	🔹 All Spot 🛛 👻	Filter1D 🔹	2	<u>7</u>	
			+		
Set Name: Set 1					
✤ Shortest Distance	to Spots Spots=Cyan		-		
≣ n 1.02				▶ Color	
				Name: Red Coloc Cyan	
E				▶ Color	
				Name: Red Not Coloc Cyan	- ×
4/4			. <u>e</u>		
Batch stores proce	essed image				
	🔵 Back	Cancel	🔵 ок		

The Spots wizard of creation to detect Red alleles as "Red" Spots is ready. The small magic wand icon in front of the "Red" object disappears.

Batch process launch

The Batch Editor will close:

<u>File Arena View H</u> elp					
Arena Surpass Vantage Observe Folder New F	older New Batch New Plot			Newsletter	袭 Imaris
d Observed Folders Observed Folders ▼ b CAUsers/Imarits/Imarits Demo Images b D/Demo Data/Imarits Learning Path images b Deberno Data/Imarits Learning Path images b Besperiment2 CelldermoITF_to_Convert_To_IMS_Format Stitcher-Introduction, Mouse Brain To Deconvolve See Read Me In This Folder	O DADerno Data/Umaris Learning Path imageA6-Batch Colocalized Spots/Experiment1 ImageA6-Batch Colocalized Spo	র্ট । Nothing selected			
			Coloc.icsx_[ibm03115-38-02.945]		ŝ
	C Batch Pipeline Editor: Coloc.icsx Coloc.icsx Drop an image here to start the batch wizard.	🖹 🗙			
	Image Processing Spots Spots Spots		=: Global Queues	h File Cop	
	Command Create Points				
		🧬 Batch Runs: 🛛	Idle 🏾 🏞 File Conversion: Idle Zo	oom: Medium	i Icons 👻

1D comparison plot of the 2 experiments

If you don't see this plots in the Vantage interface, please make sure you are in the 1D View

To know which batch number (ims1_2021-06-03T15-38-02.9**45 or** ims1_2021-06-03T15-38-03.9**96**) corresponds to which folder (Experiment**1 or** Experiment**2**) you can develop the table of results under the "Detailed" tab and focus on the "Original Image Name" column as follow:

ď			Plot Nur	nbers Area		
ailed	Surpass Object Data ID	Original ID	Original Component Name	Original Component ID	Original Image Name	Orig 🏝 📑
Deta	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
چ	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
E	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
Su	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
Tests	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
ical ⁻	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
atist	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
5	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
	200001		Red	200003	Experiment1.2_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo D≀
	200001		Red	200003	Experiment1.1_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
	200001		Red	200003	Experiment1.1_[ims1_2021-06-03T15-38-02.945].ims	D:\Demo Da
	200002		Red	200003	Experiment2.1_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo Da
	200002		Red	200003	Experiment2.1_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo D≀
	200002		Red	200003	Experiment2.1_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo Da
	200002		Red	200003	Experiment2.1_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo D≀
	200002		Red	200003	Experiment2.1_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo Da
	200002		Red	200003	Experiment2.1_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo D≀
	200002		Red	200003	Experiment2.2_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo Da
	200002		Red	200003	Experiment2.2_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo D≀
	200002		Red	200003	Experiment2.2_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo Da
	200002		Red	200003	Experiment2.2_[ims1_2021-06-03T15-38-03.996].ims	D:\Demo Da

Export statistics for further analysis

To get the counts per Class of Spots, we need to export the statistics to excel using the blue floppy disk icon. This was already done so no need to do it , this is just for your information.

You can explore in Excel file of the exported results and see the following results: in explorer under Learning Path images/6-Batch Colocalized Spots/ ScatterPlot

More for later...about this topic: You can have a look at the native image I used to create this exercise: **6-FISH-Spot-Coloc-J-Chaumeil** -Batch:

- Webinar: <u>How to make your image analysis workflows more efficient?</u>
- Tutorial video: Batch Pipeline for Image Processing and Object Detection
- Tutorial video: <u>Batch Pipeline for Image Processing</u>
- Tutorial video: Calculate Shortest Distance for Multiple Datasets at Once in the Batch Mode

-Colocalization tutorial and webinar

Appendix1: How to quickly measure a distance:

Appendix 2: Spots Property tabs

Back to Exercise 1 A Back to Exercise 4

Settings : Set Spots display

Creation

- Rebuild Spots
- Creation parameters list that you can copy and paste in your e-notebook
- Save the used parameters to run them in a next similar image

Edit: useful for manual corrections, you can delete or add manually Spots, with Shift + Left Click:

- Pointing on the signal (cell with no Spot associated) to add a new Spot
- Pointing on an existing Spot to delete it

Track Editor: a line represents each track. Each line is composed of circles, representing objects, and line segments which connect a sequence of objects. The first row/column of the track-editing table displays the timeline. Each number represents a time point in the series. Track Editor has several features that help you modify your tracks

Event: Imaris 9.7 introduces the concept of "events" to allow alignment of time series data by "events" on the time axis.

Classification: you can manually label sets of Spots. The Label will appear in the statistics in the « Label » column.

Filter: you can select Spots according to any statistic and duplicate the selected subpopulation to a new Spots object.

Statistics: all statistics calculated can be visualized and exported from this tab

Color: you can change the Spots rendering : colour, transparency, assign them a random colour (Object ID) and even colour code according to a statistic

Tool: gives access to installed Spots Xtensions. These are short editable scripts. You can add your own scripts (Matlab., Python, C++ ...) or used existing Imaris ones (most of them are in Matlab)

Back to Exercise 1

Appendix 3: Imaris Tracking algorithms and options

Back to Exercise 4

Brownian Motion

This algorithm models the motion of each Spot as a Brownian motion. This model is appropriate if your Spots perform similar to a Brownian motion (the random movement of Spots with very frequent changes in direction and no discernible pattern).

The only prediction applied is that the Spot does not move further than the specified speed allows, so the maximum speed constrains the distance from one time-point to the next.

Autoregressive Motion

This algorithm models the motion of each Spot as an autoregressive AR1 process. This model is appropriate if your Spots perform any kind of continuous motion. The AR1 model looks back to one time-point, and predicts that the Spot will move again the same distance and in the same direction. The user-specified **Maximum Distance** value is the distance in which the Spot is allowed to deviate from the predicted position. Some changes in direction are tolerated because of the maximum distance parameter, and because AR1 does not remember farther back than one time-point.

Autoregressive Motion Expert

This algorithm models the motion of each Spot as an autoregressive AR1 process (see above). It is suitable for tracing of multiple objects with adjacent or crossing paths, especially if the neighboring objects have a stable (but different) intensity. In Autoregressive Motion Expert the algorithm called Total Cost determines the most appropriate connections for tracks by seeking the lowest Total Cost. In this case, the Total Cost algorithm combines Intensity Cost and Distance Cost functions (see Intensity Weight below).

Connected Components: For this algorithm, Spots in adjacent time-points are considered connected if the Spot spheres occupy some of the same space (the spheres would overlap if two time-points were merged into one). It compares the amount of overlaps between identified objects in the previous frame with those in the current frame. All the object with the overlap will be assigned the same track ID. Connected Components and Lineage are the only algorithms that automatically handle lineage (spots that diverge). It will only work with images that have excellent time resolution, because the Spot cannot ever jump a distance larger than its own size.

NB: I nearly exclusively use this algorithm when I need object merges to be detected. It is the only algorithm which can do so.

Lineage: this model is intended for events such as cell division in which the splitting of objects is to be analyzed. This algorithm models the motion of each object as an autoregressive AR1 process (refer to Autoregressive Motion above). The object data is then compared so that only the objects that undergo splitting are connected, and assigned the same track ID. Objects that pass in close proximity, or overlap, are not associated. This is in contrast to connected components, where any objects that overlap are determined and considered connected.

Max Distance: disallows the connection between a spot and a candidate match if the distance between the predicted future position of the spot and the candidate position exceeds the defined maximum distance.

Max Gap Size: An object might fail to be segmented from some time points, which could lead to a Track breaking apart and the creation of Track fractions. Instead of creating track fragments, with gaps between undetected objects, the gap-closing algorithm creates tracks by linearly connecting objects associated with the same track. The time period in which the objects connection is automatically established is based on the value defined in the Max Gap Size value.

The Max Gap Size defines the maximum number of the consecutive time points, which are allowed to be missing in order for a track to continue.

Back to Exercise 4

Appendix 4:Surfaces Property tabs

Settings: Set Surfaces display

Creation:

- Rebuild Surfaces
- Creation parameters list that you can copy and paste in your e-notebook
- Save the used parameters to run them in a next similar image

Draw: allows the user to semi-automatically create further Surface objects.

- Add/Delete Shift + Left click to add a Surface using either the Marching Cubes or Magic Wand technique
- **Contour**: to extract a 3D object by manually drawing the object contours on 2D slices. You can employ this method whenever simple threshold does not yield individual structure or to define manually drawn ROIs

Edit:

- For manual corrections, you can delete, cut, unify and split Surfaces
- Merge multiple Surfaces object <u>from the list</u> of object
- Duplicate Surfaces
- Create a new masked channel and/or a Distance Dransform channel.

The Distance Dransform channel is a new floating point image. This channel holds at each voxel the value for the shortest distance to the surface from the centre of that voxel. The values of the Distance Transform inside the surfaces will be negative

Classification: you can manually label sets of Surfaces. The Label will appear in the statistics in the « Label » column..

Event: Imaris 9.7 introduces the concept of "events" to allow alignment of time series data by "events" on the time axis.

Filter: you can select Surfaces according to any statistic and duplicate the selected subpopulation to a new Surface object.

Statistics see next section

Color: you can change the Surface rendering : colour, texture, transparency, assign them a random colour (Object ID) and even colour code according to a statistic

Tool: gives access to installed Surfaces Xtensions. These are short editable scripts. You can add your own scripts (Matlab., Python, C++ ...) or used existing Imaris ones (most of them are in Matlab)

Back to Exercise 2

Appendix 5: Machine Learning Statistics Values

These features do not appear in the normal Imaris set of statistics values. For most purposes it should not be necessary to look at the list of statistics values computed for machine learning. The list of machine learning statistics is visible only on the **Settings tab** of the machine learning user interface.

Imaris machine learning approach is similar to: Ranzato, M., et al. "Automatic recognition of biological particles in microscopic images." *Pattern recognition letters* 28.1 (2007): 31-39. Ranzato et al. make use of multi-scale features invariant to shift and rotation as described originally by Koenderink and van Doorn, "Representation of local geometry in the visual system." *Biological cybernetics* 55.6 (1987): 367-375.

For classification of Spots Imaris computes Gaussian derivatives up to second order at a range of scales from 1 times the spot radius up to 8 times the spot radius. This creates a large set of shift and rotation invariant features that describe the local image intensity around a spot up to second order. In the list of machine learning statistics the names of these features all start with "**JET**". You can think of these features as describing **the local "intensity landscape**" of each channel at the position of the spot in terms of how high, how steep and how curved the landscape is.

In addition to the Gaussian derivatives of the original channels Imaris also computes features that describe the local "**texture**" of an image around a spot. To do so it computes a binary image capturing the positions of local extrema in the original channel and from this binary image it computes the same Gaussian derivatives as for the original channel intensities. In the list of machine learning statistics the names of these features all start with "**TEX**".

Both sets of features together provide a lot of useful features for a machine learning classifier.

Back to Exercise 3

Appendix 6: Display Adjustment window

The Display Adjustment options let you choose the channel visibility as well as improve the image display by concentrating on a limited color contrast range of voxels. Usually the color contrast values of the voxels stretch over a wide range (e.g. 0 - 255).

The Display Adjustment function lets you set an upper limit for maximum color and a lower limit for minimum color (i.e. black). The range between these two limits - represented by triangle

Display Adjustment Dialog (one for each channel)

Switch the individual channels on or off.

• Check or uncheck the required channel check-box to switch the channel visibility.

Change the channel parameters such as name, color and description.

• Click on the channel name to open the Image Properties. For a detailed description please refer to Section Menu Edit - Image Properties - Channels 1...n.

Show/Hide all Channels

• Check or uncheck to show or hide all channels as required.

Button Auto Adjust all Channels

• The auto function works as follows: the minimum value is set to the first mode (maximum) of the histogram. The maximum value is set to a value that is around the 99.8 percentile of the histogram which effectively disregards high intensity outliers.

Button Reset all Channels

• Click on the button to set the image back to the original values.

Button Advanced

• Click on the button to open the Advanced settings (see below).

Advanced Settings

Min and Max

- Enter direct values in the Min (lower limit for minimum color) and Max (upper limit for maximum color) fields.
- Alternatively drag in the display adjustment dialog the upper or lower handle of the adjustment line to adjust the Min and Max limits.

The effect of the change can be seen on the channels (channels appear brighter or darker).

Gamma

The default value of the gamma correction is 1 (the range between lower and upper limit is extrapolated in a linear mode to the full data set range). Enter a value below 1 and the linear mode is transferred to a nonlinear mode, the lower intensities appear brighter. The effect of the change is directly visible in the viewing area.

- Enter the value in the respective field.
- Alternatively click onto the middle triangle in the display adjustment dialog and drag it to the left to increase brightness/to the right to decrease brightness.

Histogram

A histogram is a statistical data analysis, representing linear voxel within an image of the selected channel.

Change Channel Color

• Click on the channel name to switch directly to the channel properties

Back to Exercise 1

Back to Exercise 2

Display Adjustment
CollagenIV (TxRed)
GFAP (FITC)
TOT GFAP (FITC) 147
Show/Hide all Channels
Auto Adjust all Channels
Reset all Channels
Advanced
Settings - GFAP (FITC)
(in the second s
Min: 🔻 0.00 🔺
Max: 🔻 126.80 🔺
Gamma: 🔻 1.00 🔺

